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Abstract— Mobile ground robots operating on unstructured
terrain must predict which areas of the environment they
are able to pass in order to plan feasible paths. We address
traversability estimation as a heightmap classification problem:
we build a convolutional neural network that, given an image
representing the heightmap of a terrain patch, predicts whether
the robot will be able to traverse such patch from left to
right. The classifier is trained for a specific robot model
(wheeled, tracked, legged, snake-like) using simulation data on
procedurally generated training terrains; the trained classifier
can be applied to unseen large heightmaps to yield oriented
traversability maps, and then plan traversable paths. We
extensively evaluate the approach in simulation on six real-
world elevation datasets, and run a real-robot validation in one
indoor and one outdoor environment.

I. INTRODUCTION

In most indoor scenarios, mobile robots are equipped with
a map of the environment, which is divided into traversable
and non-traversable cells. A cell containing movable obsta-
cles or walls is labeled as non-traversable, while a cell with
no obstacles is labeled as traversable. Using this internal
map, path planning can be solved using well-known algo-
rithms [1].

In outdoor scenarios, creating a similar map of the terrain
might be challenging. A cell might be traversable only in a
specific direction and by a specific robot: a wheeled robot
with limited power might be able to descend, but not ascend,
a slope; a tall robot with a high center of mass might both
ascend and descend the same slope, but then capsize when
traversing it from side to side; a bicycle might hop on a side-
walk, but only if it approaches it from an orthogonal angle.
Moreover, it might be difficult to anticipate all the difficulties
that a robot may encounter: a legged robot may stumble in
a terrain with holes of a size comparable to its feet; vacuum
cleaner robots might get stuck over power cords; a car with
a low chassis may not pass over a speed bump.

We consider the problem of estimating where and in which
directions a given 3D terrain is traversable by a specific
ground robot, using a general approach based on machine
learning that applies regardless of the robot’s locomotion
method (wheeled, tracked, legged, snake-like), physical char-
acteristics (size, motor torque), and low-level controller (anti-
skid algorithms for wheeled robots, foothold selection and
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R. Omar Chavez-Garcia, Jérôme Guzzi, Luca M. Gambardella and
Alessandro Giusti are with the Dalle Molle Institute for Artificial Intel-
ligence (IDSIA), USI-SUPSI, Lugano, Switzerland. omar@idsia.ch

Data and code to reproduce our results, video demonstrations, media
material, and additional information are available online: https://
romarcg.github.io/traversability_estimation

gait selection algorithms for legged robots). We will define a
given terrain patch as locally traversable in a given direction
if the robot, once placed in the center of the patch, can
proceed in that direction for at least a short distance when
driven by its low-level control algorithm.

When robot control parameters are known, traversability
is only affected by the characteristics of the terrain around
the robot’s position. Therefore, for a given robot pose X robot

with position p and orientation θ, we consider a heightmap
patch centered in p and rotated in such a way that the
robot is pointing towards the right of the patch. The patch
is represented as a heightmap image whose pixels indicate
height values. We cast the patch traversability estimation as
a binary classification problem (with classes traversable vs
non-traversable), using such image as input, and solve it by
training a convolutional neural network (CNN).

Training datasets are obtained by simulating the robot
on many procedurally generated training terrains, which
represent a variety of obstacles such as ramps, steps, bumps,
holes and rugged areas; during such simulations, the robot
is spawned in random positions and orientations, and in-
structed to proceed straight ahead; its progress is monitored
and instances for traversable (where the robot successfully
proceeds) and non-traversable (where the robot can’t pro-
ceed) heightmap patches are continuously recorded. Once
the model is learned from such training data, it can be
applied densely on any, possibly large, unseen heightmap.
Because accurate physical simulation is expensive, evaluating
the classifier on many points and orientations of a test terrain
is orders of magnitude faster than simulating the robot.

After reviewing relevant literature in Section II, we in-
troduce in Section III the main contribution of this work:
a complete framework for traversability estimation. This
framework includes: i) an algorithm for procedural gener-
ation of training heightmaps, ii) a classifier for estimating
traversability of heightmap patches, and iii) its application to
path planning. Experimental validation and results on real-
world heightmaps are described in Section IV.

II. RELATED WORK

Estimating terrain traversability is a fundamental capa-
bility for animals and mobile ground robots [2]; most or-
ganisms are known to use visual perception for this task,
and most related works in robotics use on-board cameras
or depth sensors. Then, traversability can be estimated from
appearance cues, 3D geometry, or both [3]. In many cases,
the link between such input and traversability is learned in a
supervised fashion. We first categorize related works by their
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input data, then focus on different options to gather training
information.

Inputs. When using appearance cues as input, one possible
approach is to learn a classifier to directly classify traversable
areas of the terrain in front of the robot [4], [5]. A more
common approach is to first use a classifier to segment the
input image in a number of classes (e.g., paved, rocky, grass,
obstacle), then assign to each segment a predetermined cost
for traversal, which may be infinite for segments known to
be impassable [6]. In either case, some works use generic
visual features [7] (such as texture descriptors) with stan-
dard classifiers (such as support vector machines or random
forests [8]), whereas others adopt deep learning techniques
such as CNNs [1], [9], which operate on raw image data and
learn meaningful problem-specific visual features.

Geometry-based approaches use local [10] or global sen-
sory data to derive an elevation map of the terrain, which
is a convenient spatial representation for ground robots [11].
Then, one option is to simulate a model of the robot on
different areas of such elevation map: this allows one to
explicitly test traversability, or, in a simpler setup, to evaluate
the pose that the robot would assume when lying on each
point of the elevation map [12]. A more common approach
evaluates each point of the elevation map by extracting
simple local features (such as slope, roughness, step height),
and then estimate traversability either through handcrafted
rules, or using a learned classifier [13], [14], [15].

Our approach uses exclusively geometry information
(while in this paper we work under the assumption that
the heightmap is given in advance, nothing would change
if the data was acquired by an on-board sensor). Instead of
relying on high-level features, we feed raw elevation data
within each heightmap patch to a CNN; to the best of our
knowledge, this is the first application of deep learning to
heightmap data for traversability estimation. By using a CNN
to extract problem-specific features, we learn which terrain
patterns could cause locomotion problems to a specific robot,
without prior assumptions: as we discussed in Section I, such
patterns may be complex, orientation-dependent and counter-
intuitive; experimental results in Section IV-A confirm that
our approach performs better than a feature-based one.

Source of training data. Using a supervised learning
approach exempts one from the need to manually define
the link between the input data and traversability; on the
other hand, it requires a set of labeled examples, whose
size, quality and representativeness are key to the final
performance: the strategy adopted to acquire such training
data is an important (and sometimes, prevailing) component
of all related literature [3]. Our approach exclusively relies
on training data acquired from simulations on procedurally-
generated terrains: this allows us to cheaply generate large
datasets for data-hungry deep learning models. This approach
has not yet been attempted in the traversability literature, but
training from simulations is a common strategy for learning
manipulation or legged locomotion skills, especially when
reinforcement learning techniques are adopted [16], [17].

One possible drawback of this choice is that the proce-

durally generated terrains may not be representative of the
shape of real terrains: this would yield classifiers that suffer
from bad performance when predicting whether a simulated
robot can traverse a testing terrain acquired from the real
world; our experiments in Section IV-A refute this hypothe-
sis. Another possible drawback is that the simulation (of the
robot, the terrain, or their interaction) may not be realistic
enough: then, a classifier that is accurate when predicting
the traversability of a simulated robot would be inaccurate
for a real robot. Our real robot experiments (Sections IV-
A and IV-D) suggest that, in two different environments, the
classifier outputs match the observed robot ability to traverse
obstacles; however, such environments have the same easy
characteristics of our simulated environment: non-slippery,
solid terrain. The predictive performance of our current
classifier on sandy, unstable or slippery environments would
be poor, unless such characteristics are simulated during
training.1 Accurately predicting vehicles on soft ground is
an important research line [18], which may leverage ad-hoc
simulators validated with real-world data [19].

Transferring models learned in simulation to the real world
is a very active research topic in the manipulation litera-
ture [20]. Instead of dealing with this issue, the traversability
literature acquires training data from the real world; then,
associates observed input data to a ground-truth traversability
label, which can be determined in one of two ways.

The first option is to use the robot’s own experience.
Then, the robot needs a way to detect whether the area it
is passing is traversable or not, using wheel slippage [21],
vibration sensors [22], or visual odometry to check progress
(which is a possible extension for our approach, as we note
in Section V).

A second option is to entrust labeling to a human; this
could be done in a direct, straightforward way (the robot
acquires data, a human marks each input with a traversability
label, yielding a training set) [23], or using strategies to make
the process more efficient. For example, in [24] a human
draws a path from a source to a target, and the system
infers which areas the human purposefully avoided and
automatically uses such patches as non-traversable examples.

An early version of the present work, using a simplified
model and with a preliminary experimental evaluation, was
previously presented in [25].

III. TRAVERSABILITY ESTIMATION FRAMEWORK

Figure 1 illustrates the proposed framework for traversabil-
ity estimation. Next, we describe how the simulation en-
vironment is set-up (Section III-A), detail the process for
generating training and evaluation datasets (Section III-B),
and finally describe classification approaches (Section III-C).

A. Traversability from Simulation

We adopt the Gazebo simulator and the ODE physics
engine [26] for accurate physical simulation. We simulate the

1This assumes that the whole terrain, both in training and in testing, has
the same physical characteristics; if it does not, additional input would be
needed, as we foresee in Section V



Fig. 1. The robot model runs in simulation on procedurally generated
terrains (left) to generate datasets linking heightmap patches with their
traversability (top); on these datasets we train classifiers to estimate the
probability that a given heightmap patch is traversable or not (bottom). The
learned classifier correctly predicts terrain traversability for a real robot
(right).

Pioneer 3-AT mobile robot (of size 49 cm× 50 cm× 29 cm,
see Fig. 1) moving forward at a constant velocity of 15 cm/s
on an uneven terrain whose shape is determined by a given
heightmap. We capture the robot’s trajectory on the terrain
to extract traversability information.

1) Heightmap Generation: In order to generate meaning-
ful training data, we need to simulate the robot moving
on interesting terrains that pose varied and representative
challenges. This could be achieved by using data from real
terrains, by manually creating interesting heightmaps, and/or
by synthesizing them using procedural generation techniques.
We follow exclusively the third option. This choice allows
us to generate arbitrarily large amount of training data, and
explore an interesting research question: can we learn a
traversability classifier from synthetic heightmaps that works
well on real heightmaps?

We generate 30 training terrains; the size of each generated
heightmap is 512 px×512 px that, when simulated, is scaled
to represent a surface of 10m×10m (≈ 2 cm/px resolution).
Each terrain is generated by summing multiple realizations
of random 2D simplex noise [27] (a variant of Perlin noise
[28] frequently adopted in the procedural generation litera-
ture [29]) with different periods. For example, a heightmap
obtained from simplex noise with period 30 cm, scaled such
that it extends to a height of 20 cm, yields a terrain with
medium-sized smooth rocks; a period of 10m with a 3m
height range yields a landscape with small steep hills. A
weighted sum of the two components yields rocky hills.
Within a given terrain, we modulate the weight of one
component such that it spans the range 0 to 1 along the x
axis, and the weight of the other component such that it does
the same along the y axis. In this example, we would have
flat terrain at (x, y) = (0, 0) (both components have zero
weight), rocks on flat ground at (x, y) = (10, 0) (only the
first component), smooth hills at (x, y) = (0, 10) (only the
second component). This ensures that a single map represents
a range of parameters, including terrain that is neither too
simple nor too challenging.

Additional features such as holes, steps, bumps protruding
from a flat surface and rail-like indentations are generated
by applying various scalar functions to heightmap values.

Figure 2 shows examples of resulting training terrains. 2

2) Simulation Process: Each simulation begins by picking
one at random of the 30 training terrains; the robot is set to
a random pose on the map and moves forward at constant
velocity without steering. After the robot reaches the edge
of the map or gets stuck for some time, it is re-spawned to
a different pose on a different training terrain to generate a
new trajectory.

For each trajectory, the robot poses and their associated
heightmap patches are recorded. The heightmap patch as-
sociated to a pose is centred on the robot’s position and
oriented in such a way that the robot is facing towards the
right of the patch (see Fig. 1-middle top). If and only if the
distance between the current pose X robot(t) and a future pose
X robot(t+ T ) is greater than a threshold d and aligned with
the robot’s orientation, then the current patch is labeled as
traversable. Otherwise the current patch is labeled as non-
traversable.

Figure 3-left illustrates the traversability labeling for
patches along a trajectory, with T = 1 s and d = 0.12m. The
robot traverses a set of smooth patches until it gets blocked
by a bump almost as high as the robot itself. As illustrated in
Fig. 3-right, we use this information to label the first patches
as traversable and the last patches as non-traversable.

B. Dataset Generation

From each simulated trajectory (on average 20 s), we sam-
ple the robot pose and the corresponding heightmap patch
at 20Hz. The patch and its traversability label represents a
sample in the dataset.

We produce a training dataset (450k samples, equaling
roughly 27 km traveled) using the 30 training terrains and a
synthetic evaluation dataset (150k samples) from 10 terrains
generated with a similar approach (see Section III-A.1).

Figure 3 illustrates the patch extraction process from the
trajectory in the synthetic map on the left. The height values
in each patch (Fig. 3-right) are offset in such a way that
the patch center (i.e. at the robot’s position) is mapped
to height 0. This makes the patches independent on their
absolute height on the heightmap, a feature that does not
affect traversability.

For quantitatively evaluating our classifier in real-world
maps, we consider 6 scenarios, from which we extract a total
of 350k samples, equaling roughly 21 km traveled. Three
of these scenarios are publicly-available [30] heightmaps
from a mining quarry, the town of Sullens, and a Gravel
pit; they have been acquired with a fixed-wing flying robot
using structure-from-motion techniques. One map was built
by a quadcopter equipped with a depth sensor, from an
indoor set-up in the ETH Autonomous Systems Lab (ETH-
ASL) [31]. Additionally, we consider two maps for qual-
itative assessment of traversability estimation with a real
robot: Bars, a simple indoor map consisting of a floor with
horizontal bars with different width and height, manually

2In supplementary material we provide source code for generating our
training dataset and an appendix describing the approach in more detail.



Fig. 2. 4 out of 30 procedurally generated training terrains, which include common terrain features such as bumps, rails, steps and holes.

Fig. 3. Left: trajectory extracted from a training dataset; robot silhouette
and yellow arrow indicate the initial pose. Right: visualization of some of
the resulting traversable (green) and non-traversable (red) patches.

built to verify if the learned model can properly estimate
the traversability of a real Pioneer 3-AT; Slope, an outdoors
scenario (manually mapped with a Tango RGB-D sensor)
consisting of an irregular grass slope surrounded by a smooth
uphill walkway. The real robot’s performance in this scenario
is reported in Section IV-D.

Figure 4 shows reference images of all the real-world
datasets (excluding the Bars map) and their corresponding
heightmap. Table I summarizes datasets and the maps they
have been obtained from. All datasets were generated using
the robot model described in Sec. III-A, T = 1 s, d = 12 cm
and a patch size equivalent to 1.2m× 1.2m.

C. Training Traversability Classifiers

We address the problem of estimating terrain traversabil-
ity as classification on heightmap data. We compare two
alternative approaches: extracting descriptive features from
each heightmap patch and then applying standard statistical
classification techniques [8], or adopting CNNs, a now-
standard deep-learning approach which operates directly on
raw input data. In either case, the output of the classifier
indicates if a patch is traversable.

For the feature-based approach, we compute quantities
that provide traversability cues, such as the average terrain
steepness in the robot’s motion direction (i.e. from left to
right of the patch), or the maximum height of any steps in
patch. In our case, we compute the Histogram of Gradients
(HOG) of the heightmap patch, which includes these pieces
of information (e.g., the gradient of a heightmap corresponds
to the local steepness). Computing HOG over 6 orientations,
8 px× 8 px per cell, and a block of 3× 3 cells, results in a
descriptor with 324 features that we classify by means of a
Random Forest (RF) classifier [32] with 10 trees.

In the CNN-based approach, it is expected that the
network autonomously learns meaningful, problem-specific

features; because the input data is high-dimensional and no
prior knowledge of the problem is provided to the model,
this approach requires more training data, which however is
available from our extensive simulations. Our CNN is built
on the Keras [33] front-end powered by TensorFlow [34]; it
is composed by interleaved convolutional and max-pooling
layers, a classic architecture that is well known to be suited
to visual pattern recognition problems [35]; a 60 px× 60 px
input layer is followed by: a 3 × 3 convolution layer with
5 output maps; a 3 × 3 convolution layer with 5 output
maps; a 2 × 2 Max-Pooling layer; a 3 × 3 convolution
layer with 5 output maps; a fully connected layer with 128
output neurons; a fully connected layer with 2 output neurons
followed by a softmax layer (output). All layers implement
the ReLU activation function. The network is trained for
100 epochs to minimize a categorical cross-entropy loss
using the Adadelta optimizer. Following the current best
practices for visual pattern recognition CNNs [33], several
variations on this architecture have been evaluated with
minimal performance differences.

IV. EXPERIMENTAL RESULTS

The following sections detail the comparison of the two
classifiers described in Section III-C and an additional base-
line dummy classifier that always returns the class most
frequent in the training set.

A. Classification Results

The performance of the three estimators on the evaluation
datasets is reported in Table I. We observe that the CNN
estimator outperforms both the baseline and feature-based
approaches both on synthetic and real-world heightmaps.
Performance is lower on the real datasets Sullens, Gravelpit
and Quarry than on synthetic evaluation data, probably
because of some elevation patterns, such as narrow passages,
tight rails and low barriers that may block the robot, which
are not well represented in procedurally-generated training
data. Although the Sullens dataset contains a limited variety
of interesting terrain features (mainly slopes, steps and
bumps), it illustrates that the classifier has a reasonable
performance on a common scenario. Many features of real
terrains such as slopes, holes, rails, steps and bumps are
correctly classified in real datasets (see Fig. 5 and 7).

In order to validate whether the classifier is effective in
a real scenario, we built the Bars environment (Figure 1)
which features two horizontal wooden bars with a rectangular
cross section as obstacles. One bar is 6 cm deep whereas



Fig. 4. Reference images (top) and heightmaps (bottom) for the 5 of the 6 real-world evaluation datasets. Left to right: Mining quarry [30], Sullens [30],
Gravelpit [30] (one of three areas extracted from the same scenario), ETH-ASL[31] and Slope (acquired area corresponds to the blue outline).

the other is 8 cm deep. Both are 6 cm high. We verified
that the robot is unable to traverse the former and can
very rarely traverse the latter; the classifier outputs very low
traversability probabilities for both; more interestingly, the
classifier correctly predicts that the robot would be able to
traverse the obstacle if it can climb a bar with only one of its
wheels (estimated probability about 50%); a video demon-
stration can be found in https://romarcg.github.
io/traversability_estimation . A more extensive
real-robot experiment in an outdoor scenario is reported in
Section IV-D.

B. Traversability Visualization on the Quarry Dataset

The Quarry dataset was generated from a mining quarry
map (see Fig. 4) of 0.02 km2 [30]. This map contains
challenging roads and barriers designed for mining trucks.
To make the map more suitable for our robot, we re-scaled
the map to 1

4.5 of its original size.
For this analysis, we fix a direction and iterate over the

entire heightmap extracting patches of 60 px × 60 px with
a stride of 5 px. This process is equivalent to translating
the robot’s position over the map while keeping a fixed
orientation. Figure 5-top shows the traversability estimation
for the mining quarry for two orientations, indicated by the
arrows. Traversability is represented as a colored overlay
on the surface of the heightmap (traversable is green, non-
traversable is gray).

The estimator correctly marks the main road (≈ 2m wide)
as traversable. Very steep or vertical slopes are recognized
as non-traversable when going up but, dangerously, marked
traversable when going down. This particular result is con-
gruent with the definition of traversability we used, which
only considers whether the robot can proceed but does not ac-
count for its safety. Slopes are always classified as traversable
downhill and, sometimes, transversally. Most of the rough
surface at the top of the heightmap is correctly found as non-
traversable. The orange frame in Fig. 5 reports the minimum
traversability over 32 orientations: green areas are traversable

Fig. 5. Top: Traversability estimation for the Quarry map for two
orientations: 90◦ (up) and 270◦ (down). Bottom: Minimum traversability
(orange frame) overlay over 32 possible orientations. Green opacity indicates
traversability degree. Pioneer 3-AT’s model is displayed for size comparison.

in all directions; this yields a compact, intuitive visualization
but does not convey directional information.

Traversable areas in the mining quarry correspond to min-
ing roads, flat terrain, short bumps and slopes. Figure 6 shows
the minimal traversability map for the Sullens heightmap.
Streets, pedestrian side-walks and garden entries are clearly
estimated as traversable. Challenging slopes uphill to the
central building (blue square) are classified with an average
confidence of traversability (translucent green).

C. Computational cost

Training the traversability classifier requires to: procedu-
rally generate terrains (few milliseconds); simulate the robot
on such terrains to generate the 450k-sample training datasets
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TABLE I
FOR EACH DATASET WE REPORT ACCURACY (ACC) AND THE AREA UNDER THE ROC CURVE (AUC) TO COMPARE OUR APPROACH (CNN) TO A

FEATURE BASED (FB) AND A BASELINE (BL) CLASSIFIER.

Quantitative evaluation in simulation

Dataset CNN FB BL Real-robot
tests

Size
( (m)×maps )

Resolution
(cm/px) Mapping

Type Name Samples ACC AUC ACC AUC ACC AUC

Synthetic
Training 450k - - - - - - - (10× 10× 2)× 30 2 -
Evaluation 150k 0.926 0.970 0.703 0.746 0.544 0.527 - (10× 10× 2)× 10 2 -

Real
evaluation

Quarry 100k 0.819 0.840 0.723 0.762 0.542 0.499 - 32× 32× 10 2 Fixed-wing
Sullens 100k 0.858 0.884 0.781 0.799 0.527 0.501 - 30× 30× 10 3 Fixed-wing
Gravelpit 60k 0.832 0.839 0.769 0.802 0.577 0.504 - (10× 20× 4)× 3 5 Fixed-wing
ETH-ASL 30k 0.887 0.921 0.789 0.817 0.492 0.511 - 7× 7× 1 2 Quadcopter
Slope 40k 0.864 0.875 0.761 0.780 0.530 0.501 Yes 7× 7× 2.5 2 Handheld
Bars 20k 0.961 0.980 0.829 0.863 0.493 0.498 Yes 10× 10× 1 5 CAD

Fig. 6. Minimum traversability overlay of the Sullens map over 32 possible
orientations. Blue square zooms in a region facing the central building.

(about one day); actually train the CNN (about 1 hour on a
single NVidia Tesla K80 GPU).

Once the classifier is trained, building traversability maps
requires to evaluate a large amount of patches; considering
a stride of 10 cm and 32 orientations, we need to evaluate
10× 10× 32 = 3200 patches per square meter, which takes
350ms on an Intel i7 desktop computer on CPU, and could
be easily parallelized to run on GPU; this timescale allows
to densely process maps at a rate comparable to the time
needed to acquire them. The time needed for inference is
independent on the content of the patches.

The computational expense for simulating a robot, in
contrast, depends on the complexity of the heightmap; in
our setup, which is not optimized for speed, simulation
speed (excluding visualization) ranged from 0.1× real time
for very complex maps (e.g., quarry) to 10× real time for
flat areas, averaging at 1× real time on relatively easy
terrain. Simulating the traversal of a 1m2 area could be
approximated by simulating 32, 1m long, trajectories, one
for each orientation; at a robot speed of 10 cm per second
and 1x real time factor, this requires 320 seconds, i.e.,

almost 1000× the time required by our approach. These
numbers may drastically change if consider the extra cost
for more sophisticated simulation (e.g., for soft ground), or
the speedup granted by future GPU-optimized simulators.

D. Path Planning on Probabilistic Traversability Maps

Traversability estimations can be used to plan a path to
a goal position which only passes through patches that are
traversable in the direction corresponding to the path’s local
orientation. In the following, we assume that the robot will
get stuck (or crash, or end up in an unrecoverable state) if
it attempts to pass through a non-traversable patch.3

We assume that traversability probabilities of patches
along a path are independent from each other, i.e., that the
traversability along a path is Markovian. If we further assume
that the robot is able to rotate in place, the probability π
to traverse a path composed of segments (e1, . . . , en) is
given by π((e1, . . . , en)) =

∏n
i=1 π(ei), where π(ei) is the

probability to traverse a segment.
However, on unstructured terrains, the robot may not be

able to rotate in place everywhere. Following the same
pipeline introduced for traversability estimation, we train
a turnability classifier to estimate the probability that the
robot, positioned in the center of a given patch, can rotate
in place by at least 45◦, clock or counter-clock wise. The
performance of these classifiers on the Synthetic and Quarry
evaluation datasets was (ACC 0.843, AUC 0.874) and (ACC
0.828, AUC 0.834) respectively.

We compute paths on a graph (N,E) of nodes regularly
distributed on a horizontal grid of poses of spatial side
18 cm and angular side 45◦. Edges in E comprise rotations
in place by ±45◦ and segments connecting poses of the
same orientation that are spatial neighbors. For each edge
e = (n,m) ∈ E, we compute length and traversal probability
π(e). π(e) is the output of the traversability or turnability
classifiers applied to a patch centered and oriented along n
(see Fig. 7-right top).

3This is a pessimistic assumption because this is not always the case: a
robot attempting to pass through a wall, for example, is unable to proceed
but may be capable of turning back and taking another path.



Fig. 7. Left: a selection of Pareto optimal paths on the quarry map for two
pairs of source (arrow) and target (white square) locations. The paths are
colored by traversal probability from red (non-traversable) to green (surely
traversable). Corresponding values for traversal probability and length of
each trajectory are shown in the side tables. Right top: a portion of the
planning graph on the quarry map. Nodes are placed on a regular grid at
18 cm. The blue edge’s traversal probability is estimated by applying the
classifier on a 1.2m× 1.2m patch (light blue) centered at the edge origin
and directed along the edge. Robot’s silhouette is shown for size comparison.
Right bottom: The trade-off between path length and traversability for Pareto
optimal paths of the bottom source-target location. Colored dots correspond
to paths drawn on the left figure.

Figure 7-right bottom illustrates the solution of the multi-
objective problem of computing the best paths with respect
to length (minimized) and traversability (maximized). A
rational agent would choose among the set of Pareto-optimal
paths. In this context, a path is Pareto-optimal if there exists
no alternative path that is both more traversable and shorter.
The shortest path (represented in red in Fig. 7-left) is Pareto-
optimal, but will have in most cases a very low traversability
probability. The path with the maximum traversability (rep-
resented in green) will also be Pareto-optimal, but may be
unnecessarily long; between the two extremes, a potentially
very large set of Pareto-optimal paths exist, spanning the
trade-off between traversability and length.

Real-robot experiment: We tested how our approach
applies to a real Pioneer 3-AT robot in an outdoor grass
slope (Slope map in Fig.4). First we use a Tango device,
handheld at 1m from the ground pointing downwards, to
build a heightmap map of the area. Then we apply our
approach to compute the oriented traversability maps and the
traversability graph. We then evaluate the safest (i.e. with
maximal traversability) path from a source position (blue
silhouette of the robot) to a desired position in the map
(white marks). The safest way for the robot to reach the top
area (square mark) is to follow the smooth side-walk ramp
uphill, avoiding the grass slope which has an irregular shaped
terrain. This path is estimated as certainly traversable: we
verified this is in fact a traversable path by teleoperating the
robot through it. The maximal-traversability path that reaches
the circle mark involves first reaching the square mark uphill

Fig. 8. Paths of maximal traversability from the robot’s initial pose
(blue silhouette) to three different goals in the Slope map. Paths are colored
according to their traversal probability, from red (low) to green (high). The
blue overlay represents the reachability map from the robot’s initial pose:
blue (certainly reachable) to gray (certainly not reachable).

on the sidewalk, then heading down on the grassy slope for
a short distance: even though it is long, this path is in fact
the most rational to reach such point, because traversing the
grass slope uphill or transversally is challenging. The star
mark lies on a difficult-to reach area in the middle of the
grassy slope. The point is not reachable from the sidewalk
above it, because such area of the sidewalk is flanked by
small step that is correctly estimated as not traversable.
The maximal-traversability path, instead, accesses the grass
in a point left to the robot, then proceeds uphill avoiding
obstacles and excessively steep or rugged areas; the path has
a traversability probability of 0.21, and we were unable to
successfully teleoperate the robot through it because it was
blocked by a bump.

The reachability map in Fig.8 illustrates which parts of
the terrain the robot can reach from its current pose. For a
given target location, it is defined by the maximal traversal
probability among all paths from source to target.

V. DISCUSSION AND CONCLUSIONS

We presented a complete framework for traversability
estimation that casts the problem as a heightmap classifica-
tion task, and applies to any modality of robot locomotion.
Classifiers trained on simulation data using procedurally-
generated terrains capture relevant terrain characteristics and
can efficiently and accurately estimate oriented traversability
maps on large unseen real-world terrains. Such maps can be
used to plan paths exploring the trade-off between length (to
be minimized) and probability of being traversable (to be
maximized).

Our approach does not capture the robot dynamics, such
as the speed with which the robot approaches an obstacle:
we limit our attention to slow robots operating on rugged
terrains, where dynamic aspects have negligible impact. We
will consider dynamic data as an additional input of our
classifier as we move towards scenarios where complex



locomotion is needed.
We remark two important limitations of our approach. 1)

We assume that the terrain’s 3D shape is the only factor influ-
encing its traversability; this is an acceptable approximation
in some scenarios (e.g., on solid ground where friction is
not a key factor), but is inadequate in many others, such as
on sand, mud, wet or slippery environments. 2) We only use
simulated data for training, but in practice, simulations rarely
manage to accurately replicate the real world.

In order to tackle both limitations, future work will aim
at using real data for training (as in [13]), which fits well
our conceptual framework. Technically, this requires that the
robot can associate the heightmap patches it’s traversing
with an outcome (successfully traversed or not) in order
to accumulate experience that can be used for training new
models or refining existing ones. Note that, in this scenario,
the robot would automatically learn the effects of soft ground
or slipping on traversability.

A notable exception are scenarios in which 3D shape alone
is insufficient to predict traversability: for example, a gentle
paved slope could be traversable, unlike a gentle muddy
slope which has the same shape. In our framework, one
could differentiate these cases by learning different models
for different terrain types (to be previously classified based
on their appearance as in [36]) or by training a single model
that uses terrain appearance as an additional input in addition
to 3D shape.
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